Synthesis of (+)-Vernolepin Related Compounds from Germacranolides

Alejandro F. Barrero*, J. Enrique Oltra and Armando Barragán

Dto. de Química Orgánica, Facultad de Ciencias, Campus Fuentenueva s/n. 18071-Granada, Spain

Abstract: (+)-8-O-acetyl-1,2,11,13-tetrahydro-8-epi -vernolepin (11) was synthesized from salonitenolide (4). The key steps were the Cope rearrangement of the germacradiene skeleton to elemadiene and the long-range functionalization at C-14, which allows the intramolecular cyclisation necessary for the formation of the δ -lactone ring of 11.

(+)-Vernolepin¹ (1) is a sesquiterpene dilactone with spasmolytic, anti-aggregating and de-aggregating activities,² as well as antitumoral activity in vitro and in vivo .³ It has been synthesized as a racemic mixture by

1, R= OH 2, R= H several authors⁴ and, recently, two enantioselective procedures,^{5,6} which take place in a number of steps, have been described. The antitumoral power of 1 resides basically in the α -methylene- γ -lactone group and is enhanced by the additional α -methylene- δ -lactone.^{3b} However, the hydroxyl at C-8 and the angular vinyl groups seem to be irrelevant for the activity. Thereby 8-deoxyvernolepin⁷ (2) and 1,2-dihydrovernolepin^{3b} (3) have an activity analogous to that of 1 against the tumoral cell lines assayed. Some procedures⁸ for the preparation of (+)-8-deoxyvernolepin (2), starting from α -santonin, have been developed. But 2 lacks the OH group at C-8, which could be

chemically employed for the introduction of lateral chains in order to modulate the activity of vernolepin. In this paper, a new strategy for the enantioselective synthesis of vernolepin derivatives, functionalized at C-8, is described.

Salonitenolide (4), cnicin (5) and monoacetylcnicin (6) are germacranolides found abundantly in the Plant Kingdom. Besides other Compositae, they occur in notable quantities in distinct species of the *Centaurea* genus, 9 from which they can be extracted by simple immersion of the fresh plant material in organic solvents. 9b Furthermore, selective saponification of the lateral chains of 5 and 6 generated 4.9b These observations prompted the authors to use these compounds as starting material in a retrosynthetic scheme (Scheme 1) designed for the enantioselective preparation of 1,2-dihydro-8-*epi* -vernolepin (7). The key steps of the retrosynthetic scheme are the Cope rearrangement of the germacradiene skeleton to elemadiene and the introduction of a functional group at C-14 of 10, which allows the intramolecular cyclisation necessary for the formation of the δ-lactone ring of 11.

Taking Scheme 1 into account, the authors obtained (+)-8-O-acetyl-1,2,11,13-tetrahydro-8-epi-vernolepin (11) from 4 in eight steps at good yields (Scheme 2).

SCHEME 2. Reagents and conditions: a) TPAP (0.06 equiv), NMO (1.6 equiv), molecular sieves 4Å, THF, rt, 1h. b) Toluene, reflux, 10 min, 75% overall yield of 13. c) (i) NaClO₂ (9.2 equiv), 2-methyl-2-butene (excess), NaH₂PO₄/H₂O (0.8M, 7 equiv), t-BuOH, rt, 2h; (ii) CH₂N₂ (excess), Et₂O, -15°C, 15 min, 84% overall yield. d) H₂ (atmospheric pressure)/Pd/C, MeOH, rt, 5h, 95% yield. e) PCC (2 equiv), NaOAc (0.5 equiv), CH₂Cl₂, 18h, 87%. f) L-Selectride^R (1 equiv), THF, -78°C, 40 min, 98%. g) PhI(OAc)₂ (1.9 equiv), I₂ (0.75 equiv), cyclohexane, hv (200 W tungsten-filament lamp), 40°C, 8h, 68%. h) (i) Ac₂O (excess), pyridine, rt, 12h; (ii) NaOAc (1 equiv), DMF, reflux, 1h 30 min, 86% overall.

The regioselective oxidation of the primary hydroxyl group of 4, with tetrapropylammonium perruthenate (TPAP) and N-methylmorpholine N-oxide (NMO) generated a 38% yield of the 15-oxogermacranolide 12 and 38% of the elemanolide 13 (14% of 4 was recovered). The formation of 13, during a reaction taking place at room temperature, indicated the facility with which the Cope rearrangement occurs once the formyl group at C-15 has been formed. With this idea in mind, the preparation of the germacranolide 8 (Scheme 1) was discarded and 12 was heated in toluene under reflux. After ten minutes 12 had almost completely been rearranged to 13 (98% yield).

The treatment of 13 with sodium chlorite was found to be the best method for the oxidation of the conjugated aldehyde. In the 1 H NMR spectrum of the methyl ester 9, 10 the coupling constant between H-5 and H-6 was 11.9 Hz, indicating their *trans* -diaxial arrangement. The α disposition of the new C-13 methyl group in the tetrahydrogenate 14 was established on the basis of the NOEs observed between H-13 (1.33 ppm, d, $J_{11,13}$ = 6.9 Hz) and H-7 (1.71 ppm, ddd, $J_{6,7}$ = 10.7, $J_{7,8}$ = 10.5, $J_{7,11}$ = 12.1 Hz) and between H-11 (2.56, dq) and H-6 (4.24 ppm, dd, $J_{5,6}$ = 11.9 Hz). The inversion of the configuration of C-8 was carried out in two steps: oxidation of 14 and stereoselective reduction of the ketone 15. In the 1 H NMR spectrum of the alcohol 10, the coupling constant $J_{7,8}$ was 2.2 Hz, showing the equatorial position of H-8.

Long-range functionalization at the C-14 methyl group of 10, generated the iododerivative 16.11 Its CIMS shows the [M+H]+ ion at m/z 423, in agreement with the molecular formula $C_{16}H_{23}IO_5$, and in its 1H NMR spectrum the diastereotopic hydrogens of the iodomethylene group resonate as two coupled signals (J= 9.6 Hz) centered at 3.22 and 4.04 ppm. Iodohydrins like 16 have been described in the hypoiodite reaction. 12 These intermediates generally evolve to cyclic ethers such as 17. In the case described here, however, together with 16 only 13% of 17 was obtained (9% of 10 was recovered). Analysis by molecular mechanics of 16 showed its minimum energy conformation (depicted in Figure 1). The bulky iodine atom of C-14 is directed to the outside of the molecule and the methoxycarbonyl group is located facing the opposite side of the same carbon. Thereby, nucleophilic OH attack on C-14 is difficult.

Finally, 16 was acetylated and treated with NaOAc in DMF under reflux. The nucleophilic intramolecular substitution of the iodine atom took place and 11^{13} was obtained. In its 1 H NMR spectrum, the characteristic signals of the δ -lactone of (+)-vernolepin appeared at 4.69 (d, H_a -14) and 3.95 (dd, H_b -14) ppm.

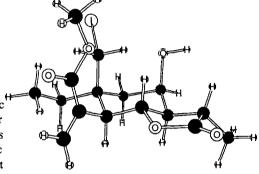


FIGURE 1

Oxidation of the selenide formed via enolate is a well established method for restoring the $\Delta^{11(13)}$ double bond of (+)-vernolepin related compounds.⁸

Acknowledgements: To William Taylor for the translation into English. To the Spanish CICYT for the Research Programme no PB92-0942. To the Junta de Andalucía for the grant provided to A. Barragán.

REFERENCES AND NOTES

- Kupchan, S.M.; Hemingway, R.J.; Werner, D.; Karim, A.; McPhail, A.T.; Sim, G.A. J. Am. Chem. Soc. 1968, 90, 3596-3597.
- 2. Vlietinck, A.J. In *Biologically Active Natural Products*; Hostettmann, R.; Led, P.J. Eds.; Clarendon Press; Oxford, 1987; p. 42.
- 3. a) Kupchan, S.M.; Hemingway, R.J.; Werner, D.; Karim, A. J. Org. Chem. 1969, 34, 3903-3908. b) Kupchan, S.M.; Eakin, M.A.; Thomas, A.M. J. Med. Chem. 1971, 14, 1147-1152.
- 4. a) Heathcock, C.H.; Graham, S.L.; Pirrung, M.C.; Plavac, F.; White, C.T. In *The Total Synthesis of Natural Products*; ApSimon, J. Ed.; Wiley-Interscience; New York, 1983; vol. 5, pp. 93-107. b) Wakamatsu, T.; Hara, H.; Ban, Y. J. Org. Chem. 1985, 50, 108-112.
- Starting from (+)-nopinone: a) Kato, M.; Watanabe, M.; Vogler, B.; Awen, B.Z.; Masuda, Y.; Tooyama, Y.; Yoshikoshi, A. J. Org. Chem. 1991, 56, 7071-7076. b) Kato, M.; Kido, F.; Masuda, Y.; Watanabe, M. J. Chem. Soc. Chem. Commun. 1992, 697-698. c) Kato, M.; Kido, F.; Watanabe, M.; Masuda, Y.; Awen, B.Z. J. Chem. Soc. Perkin Trans. I. 1993, 2831-2836.
- Using the asymmetric Heck reaction: a) Kondo, K.; Sodeoka, M.; Mori, M.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 4219-4222. b) Kondo, K.; Sodeoka, M.; Mori, M.; Shibasaki, M. Synthesis, 1993, 920-930.
- 7. Grieco, P.A.; Noguez, J.A.; Masaki, Y. J. Org. Chem. 1977, 42, 495-502.

- 8. a) Hernández, R.; Rodríguez, M.S.; Velázquez, S.M.; Suárez, E. Tetrahedron Lett. 1993, 34, 4105-4108. b) Banerjee, A.K.; Vera, W.J.; Canudas González, N. Tetrahedron, 1993, 49, 4761-4788.
- 9. a) Connolly, J.D.; Hill, R.A. *Dictionary of Terpenoids*; Chapman & Hall: London. 1991; vol. 1, p. 231. b) Barrero, A.F.; Oltra, J.E.; Rodríguez, I.; Barragán, A. *Fitoterapia* (in press).
- 10. Compound 9: White crystals, m.p. 124-126* C; $[\alpha]_D$ +105.0 (c 0.98, CHCl₃); IR v_{max} (CHCl₃) 3465, 2934, 1749, 1718,1629, 1279, 1138, 970 cm⁻¹; CIMS m/z (rel. int.) 293 [M+H]+ (80), 275 [293-H₂O]+ (100), 243 [275-CH₃OH]+ (76); ¹H NMR (CDCl₃, 300 MHz) δ : 6.36 (1H, s, H_a-3), 6.12 (1H, d, H_a-13), 5.98 (1H, d, H_b-13), 5.48 (1H, s, H_b-3), 4.89 (1H, d, H_a-2), 4.83 (1H, d, H_b-2), 4.18 (1H, dd, H-6), 4.06 (1H, dddd, H-8), 3.66 (3H, OMe), 3.14 (1H, br d, H-5), 2.67 (1H, dddd, H-7), 2.49 (1H, OH), 1.84 (1H, dd, H_B-9), 1.64 (1H, br dd, H_{\alpha}-9), 0.96 (3H, s, H-14) ppm; J (Hz): 1,2_a=10.7, 1,2_b=17.3, 5,6=11.9, 6,7=11.1, 7,8=10.2, 7,13_a=3.1, 7,13_b=3.0, 8,9_{\alpha}=10.7, 8,9_{\beta}=4.3, 8,OH=5.1, 9_{\alpha},9_{\beta}=13.1; ¹³C NMR (CDCl₃, 75 MHz) δ (from C-1 to C-15): 145.4, 112.3, 127.5, 135.7, 48.6, 77.7, 54.7, 67.2, 49.2, 41.9, 137.4, 170.0, 120.5, 17.6, 167.6, 51.9 (CO₂CH₃) ppm.
- 11. Compound 16: Oil, $[\alpha]_D$ +10.5 (c 0.98, CHCl₃); IR v_{max} (film) 3502, 2933, 1774, 1717, 1625, 1438, 1263, 1174, 1014, 756 cm⁻¹; CIMS m/z (rel. int.) 423 [M+H]+ (13), 405 [423-H₂O]+ (6), 295 [423-HI]+ (13), 57 (100); ¹H NMR (400 MHz, CDCl₃) δ : 6.50 (1H, s, H_a-3), 5.69 (1H, s, H_b-3), 4.79 (1H, dd, H-6), 4.29 (1H, m, H-8), 4.04 (1H, d, H_a-14), 3.75 (3H, s, OMe), 3.38 (1H, br d, H-5), 3.22 (1H, dd, H_b-14), 2.74 (1H, dq, H-11), 2.24 (1H, dd, H_β-9), 1.92 (1H, br s, OH), 1.75 (1H, ddd, H-7), 1.61 (1H, ddd, H_α-9), 1.58 (1H, dq, H_a-1), 1.22 (3H, d, H-13), 1.04 (1H, dq, H_b-1), 0.84 (3H, t, H-2) ppm; J (Hz): $I_{a},I_{b}=14.7$, $I_{a},2=I_{b},2=7.4$, 5,6=12.1, 6,7=10.7, 7,8=2.3, 7,11=12.6, 8,9_α=2.6, 8,9_β=3.1, 9_α,9_β=15.4, 9_α,14_b=2.0, 11,13=7.0, 14_a,14_b=9.6; ¹³C NMR (100 MHz, CDCl₃) δ (C-1 to C-15): 32.3, 8.1, 129.3, 136.1, 45.7, 75.7, 56.3, 65.2, 40.3, 41.7, 37.2, 178.6, 12.3, 22.2, 167.5, 52.4 (CO₂CH₃) ppm.
- a) Mihailovic, M.L.; Gojkovic, S.; Konstantinovic, S. Tetrahedron, 1973, 29, 3675-3685.
 b) Concepción, J.I.; Francisco, C.G.; Hernández, R.; Salazar, J.A.; Suárez, E. Tetrahedron Lett. 1984, 25, 1953-1956.
- 13. Compound 11: Oil, $[\alpha]_D + 27.0$ (c 0.10, CHCl₃); IR ν_{max} (film) 2971, 2935, 1782, 1742, 1718, 1620, 1378, 1235, 1164, 1045, 1015 cm⁻¹; CIMS m/z (rel. int.) 323 [M+H]+ (100), 295 [323-CO]+ (56), 279 [323-CO₂]+ (42); ¹H NMR (400 MHz, CDCl₃) δ : 6.73 (1H, d, H_a-3), 5.90 (1H, dd, H_b-3), 5.32 (1H, ddd, H-8), 4.69 (1H, d, H_a-14), 4.30 (1H, dd, H-6), 3.95 (1H, dd, H_b-14), 2.65 (1H, br dd, H-5), 2.37 (1H, dq, H-11), 2.09 (3H, s, COCH₃), 1.84 (1H, ddd, H_{\tilde{\text{\}

(Received in UK 12 October 1994; revised 8 November 1994; accepted 11 November 1994)